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Spontaneous haploids in durum wheat: their cytogenetic characterization
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Summary

Durum or macaroni wheat (Triticum turgidum L., 2n =
4x = 28; AABB genomes) arose as a natural hybrid
between two wild species, Aegilops speltoides Tausch
(2n = 2x = 14; BB genome) and Triticum urartu
Tumanian (2n = 2x = 14; AA genome). The two
progenitors hybridized in nature about half a million
years ago and gave rise to tetraploid wheat, presum-
ably in one step as a result of functioning of unre-
duced gametes in their hybrid BA (amphihaploid). It
is easily possible to go back on the evolutionary scale
and obtain durum haploids BA, and then regenerate
tetraploid durum plants from them. Interestingly, such
a reversion to haploidy does occur in nature as well,
although at a very low frequency. This article reports
on the occurrence of two spontaneous durum haploids
and describes their chromosomal characteristics. The
haploids (euhaploids, to be precise) had 14 somatic
chromosomes, which, on fluorescent genomic in situ
hybridization (fl-GISH), could be distinguished as 7
A-genome and 7 B-genome chromosomes. At meiosis,
only 2.3 and 2.7% of the chromosomes paired in the
two haploids, because of the presence of the homoeol-
ogous pairing-suppressor gene, Ph1. The Ph1-induced
lack of pairing is a prerequisite for chromosome dou-
bling through the formation of unreduced gametes that
give rise to tetraploid durum wheats.

Mention of trade names or commercial products in this publication
is solely to provide specific information and does not imply recom-
mendation or endorsement by the U.S. Department of Agriculture.

Introduction

Durum wheat (macaroni wheat), Triticum turgidum L.,
is a natural hybrid that enjoys the benefits of hybridity
and polyploidy. It is an allotetraploid (2n = 4x = 28;
AABB genomes) that resulted from hybridization be-
tween two wild species, Aegilops speltoides Tausch
(2n = 2x = 14; BB genome) (Sarkar & Stebbins,
1956; Wang et al., 1997) and Triticum urartu Tuma-
nian (2n = 2x = 14; AA genome) (Nishikawa, 1983;
Dvořák et al., 1993). The two progenitors hybridized
in nature some 500,000 years ago (Huang et al., 2002)
and gave rise to tetraploid wheat, presumably in one
step as a result of functioning of unreduced gametes
in their hybrid BA (amphihaploid), as demonstrated in
synthetic durum haploids (Jauhar et al., 2000). Thus, it
is easily possible to go back on the evolutionary scale
and obtain durum haploids BA, and then regenerate
from them tetraploid durum plants. Interestingly, such
a reversion to haploidy does occur in nature as well,
although at a very low frequency. This article reports
on the occurrence of two spontaneous durum haploids
and describes their cytogenetic characterization.

Materials and methods

Two haploids of durum wheat cv. Langdon were dis-
covered in our greenhouses at the Northern Crop Sci-
ence Laboratory, Fargo, North Dakota. They were first
noticed as weak durum plants, and subsequent so-
matic chromosome counts from root tips confirmed
their haploid status. Both conventional staining and
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fluorescent genomic in situ hybridization (fl-GISH)
techniques (Jauhar et al., 1999; 2000) were used to
study somatic and meiotic chromosomes. Fl-GISH was
done on mitotic and meiotic preparations by hybridiz-
ing the A-genome chromosomes with the Triticum
urartu genomic DNA (labeled with biotin 14-dATP,
100 ng/slide) and blocking the B-genome with Aegilops
speltoides genomic DNA (2,000 ng/slide). The chro-
mosome preparations were counterstained with pro-
pidium iodide (PI) and the labeled DNA was detected
using fluorescein isothiocyanate (FITC). Visualizing,
overlaying, and imaging were according to Jauhar et al.
(2000).

Results and discussion

Two spontaneously occurring haploids or, to be pre-
cise, euhaploids (2n = 2x = 14) of durum wheat
cv. Langdon were observed in greenhouse plantings.
The haploids had diminutive characters. They had con-
siderably reduced height, narrower leaves and thinner
stems, compared to the parental cultivar they originated
from. Root-tip squashes showed 14 somatic chromo-
somes, which on fl-GISH, could be characterized as
7 A-genome chromosomes and 7 B-genome chromo-
somes (Figure 1A), testifying to their euhaploid status.

The haploid plants were grown to maturity and
they produced small spikes. Immature spikes in flag
leaves on some tillers provided material for meiotic
analyses. As expected, there was very little pairing
among the 14 chromosomes (Figs. 1B, C). The two hap-
loids had 2.3% and 2.7% of their chromosome comple-
ment paired (Table 1). The Ph1 gene on chromosome
5B inhibits chromosome pairing among homologues,
i.e., between the corresponding chromosomes of the
A and B genomes (Sears & Okamoto, 1958; Riley &
Chapman, 1958; Jauhar & Joppa, 1996). One dose of
Ph1 is effective in suppressing homoeologous pairing
in synthetic haploids of both durum (Jauhar et al., 1999)
and bread wheat (Jauhar et al., 1991). It is interesting
that most spontaneous durum haploids discovered so
far have very low pairing (with 2.3 to 2.7% of the chro-
mosome complement paired) that is limited to rod biva-
lent formation (Table 1). The Ph1-induced lack of pair-
ing is a prerequisite for the formation of unreduced ga-
metes that give rise to tetraploid durum wheats (Jauhar
et al., 2000), essentially a simulation of the event that
occurred in nature (Jauhar, 2003a).

Durum wheat (AABB) is a predecessor of bread
wheat (AABBDD). Having only two genomes AA

Figure 1. Somatic and meiotic chromosomes of haploids of durum
wheat cv. Langdon. (A.) 14 somatic chromosomes after probing with
Triticum urartu DNA probe. Note 7 A-genome chromosomes (green
color) and 7 B-genome chromosomes (maroon color). (B.) Cell at
meiotic metaphase I showing 14 univalents, 7 A-genome univalents
(green color) and 7 B-genome univalents (maroon color). Note total
absence of pairing in the presence of the Ph1 gene. (C) Another cell
at meiotic metaphase I showing 14 univalents, the lack of pairing
caused by Ph1.
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Table 1. Chromosome pairing in spontaneous durum haploids (2n = 2x = 14; AB genomes)

Mean and range of
chromosome configurations

II
Chiasma
frequency:

Cultivar
No. of
cells III Ring Rod Total I per cell per II

% complement
paired Reference

Langdon 50 0.02 – 0.16 0.16 13.62 0.20 1.00 2.7 This study

(0–1) (0–1) (0–1) (12–14) (0–2)

Langdon 40 – – 0.20 0.20 13.60 0.20 1.00 2.3 This study

(0–1) (0–1) (12–14) (0–1)

Durum 94 – – 0.37 0.37 13.19 0.37 1.00 5.3 Lacadena and Ramos (1968)

(0–2) (0–2) (10–14) (0–2)

Durum 40 – – 0.18 0.18 13.64 0.18 1.00 2.6 Kimber et al. (1978)

(0–1) (0–1) (12–14) (0–1)

Santore

Cappelli – – 0.17 0.17 13.56 0.17 1.00 2.4 Romero and Sendino (1982)

Bidi 17 – – 0.05 0.05 13.90 0.05 1.00 0.7 Romero and Sendino (1982)

Note. The range of values is given in parentheses.

and BB, durum is less genetically buffered than bread
wheat, and does not seem to tolerate chromosomal de-
ficiencies very well even for single chromosomes. This
is in sharp contrast to bread wheat in which a full set
of monosomics has been reported (Sears, 1954). Al-
though some monosomics have been produced in du-
rum wheat with some difficulty, they are even more dif-
ficult to maintain (Mochizuki, 1968; Joppa & Williams,
1988). In this respect, surprisingly, there appears to
be more genetic buffering in “diploid” maize than in
tetraploid durum wheat; in maize, all 10 monosomics
(2n − 1 = 19) have been produced along with some
occasional double monosomics (2n − 1 − 1 = 18) and
even triple monosomics (2n −1−1−1 = 17) (Weber,
1970; 1994). Such a chromosomal imbalance would
not be tolerated by durum wheat. Haploid durum, of
course, can be considered to be monosomic for all 14
chromosomes. But, then it has one full dose each of the
A and B genomes. It is pertinent to state Kihara’s (1930)
definition of a genome as “a set of chromosomes that
form a fundamental genetic and physiological unit that
is indispensable for normal development and growth
of the plant”. It would appear that Kihara’s definition
applies well to wheat genomes on which he spent his
lifetime, but the maize genome would appear, in some
ways, to defy his definition.

As eloquently stated by Magoon and Khanna
(1963): “A major pathway of evolutionary advance-
ment, perhaps to meet the rigors and diversity of
environment on land, has been the assumption of dom-

inance by the diploid phase in the life cycle”. Although
the haploid state of a plant does not offer any advantage
from the evolutionary or survival standpoint, reversion
to haploidy does nevertheless occur in several plants in
nature, albeit with very low frequency. The early reports
of spontaneous haploidy in durum wheat include those
of Lacadena and Ramos (1968), Kimber et al. (1978),
and Romero and Sendino (1982). However, genetic sys-
tems for accelerating the production of haploids have
been found in several cereal crops including maize
(Coe, 1959; Kermicle, 1969) and barley (Hagberg &
Hagberg, 1980). Thus, Coe (1959) discovered a genetic
stock (stock 6) of maize, which on self-pollination pro-
duces maternal haploids at the rate of about 3%. Sim-
ilarly, Hagberg and Hagberg (1980) induced a mutant
“factor” for haploidy initiation (hap) in barley. Need-
less to say, haploids are very important tools for basic
research in cytogenetics and in several areas of bio-
logical research. They can be successfully employed
in practical plant breeding for accelerated production
of homozygous lines, and in genetic transformation
(Jauhar & Chibbar, 1999). And efficient techniques of
producing haploids are currently available in various
crop plants, including durum wheat (Almouslem et al.,
1998; Jauhar, 2003b).
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